Innovating is the only way to improve the services that we offer our customers. Innovation and research allow us to find solutions before the problem arises.


SQS places special emphasis on its R&D department each year. The importance that we give to research new processes, new methodologies and tools relating to Software Quality Assurance and Testing is the driving force behind this activity in the company.

Innovation at SQS

Innovating is the only way to improve the services that we offer our customers. Innovation and research allow us to find solutions before the problem arises.

More projects



Proyect TSI-020401-2012-12 Draft funded by the Ministry of Industry, Energy and Tourism within the National Plan for Scientific Research, Development and Technological Innovation.

Logo Ministerio

The purpose of the openETCS project is to develop an integrated modeling, development, validation and testing framework for leveraging the cost-efficient and reliable implementation of ETCS. The framework will provide a holistic tool chain across the whole development process of ETCS software. The tool chain will support the formal specification and verification of the ETCS system requirements, the automatic and ETCS compliant code generation and validation, and the model-based test case generation and execution.

Project Consortium
  • AEbt GmbH / Germany
  • ALL4TEC / France
  • ALSTOM / Belgium
  • ALSTOM Transport / France
  • ALSTOM Transport GmbH / Germany
  • ATOC / United Kingdom
  • CEA /France
  • CEDEX / Spain
  • LAAS - Centre National de la Recherche Scientifique / France
  • Deutsche Bahn AG / Germany
  • Deutsches Zentrum für Luft- und Raumfahrt (DLR) / Germany
  • DSB / Denmark
  • Eclipse Foundation, Inc. / Germany
  • EclipseSource Group / Germany
  • ERSA / France
  • ERTMS Solutions / Belgium
  • Formal Mind / Germany
  • Fraunhofer Gesellschaft / Germany
  • GE Transportation / Italy
  • Innovalia / Spain
  • Institut National Polytechnique de Toulouse (INPT) / France
  • Institut Télécom / France
  • Lloyd's register rail B.V./ Netherlands
  • Mitsubishi Electric / France
  • NS Nederlandse Spoorwegen / Netherlands
  • RINA Services SpA / Italy
  • Siemens AG / Germany
  • SNCF / France
  • Software Quality Systems S.A. / Spain
  • Swiss Railway Engineering SRE GmbH / Switzerland
  • Systerel / France
  • Technical University Braunschweig (TUBS) / Germany
  • TRENITALIA SpA / Italy
  • TWT GmbH Science & Innovation Science & Innovation / Germany
  • Universität Bremen / Germany
  • University of Rostock / Germany


The HuSIMS project aims to develop a system that can improve safety and security in city centres, train stations, office buildings etc. This will be achieved by improving the effectiveness and timeliness of response to irregular situations. Respect for personal privacy is one of our key considerations.

Need and Impact of HuSIMS

The main claim of HuSIMS is that there is a great need for improvement of safety and security in public places, which is not covered by current technologies. Once HuSIMS proves to be effective and affordable, partners believe it will find wide use internationally as well as a significant business in the market of video surveillance, a market that is growing annually at a rate of 15% in spite of the global economic crisis.

HuSIMS technology will help European companies move a step beyond current technology in the physical security market. Companies selling products in this market as well as companies in the IT market will be able to market and deploy similar systems wherever there is a public need for improved safety and security.

Main components of HuSIMS

The main components of HuSIMS are:

SQS objectives
Project Consortium
  • Alvarion / Romania
  • Alvarion / Spain
  • Afcon Software and Electronics Ltd. / Israel
  • C2TECH / Turkey
  • C-B4 / Israel
  • Emza Visual Sense Ltd. / Israel
  • Ericsson Network Services / Spain
  • Gigle Networks Iberia / Spain
  • Software Quality Systems / Spain
  • Universidad de Valladolid / Spain


What is Q-Val

Q-Val is the methodology developed by SQS to validate website applications. It allows your quality to be assessed systematically, while taking into account the very characteristics of the application and its development process. Q-Val enables you to define the requirements (whether functional or non-functional) to be met by the web application so that it can be considered as a quality web application that functions correctly.
It is therefore essential for the web application validation processes. It facilitates the pre-validation analysis and guides through the process to ensure that no important aspects are ignored.

What it is based on

The Q-Val base is a complete and highly structured set of requirements that are subject to constant monitoring and updating.

In order to define these requirements, the most extensive range of models, recommendations, web quality standards and stamps are studied. The Q-Val quality framework is based on all of the above, together with SQS's knowledge and experience in software quality.

How Q-Val is organised

Q-Val uses a complicated structure of facets organised in categories which facilitates its adaptation to the different website applications. The facets are applicable depending on the type of website to be tested.

The requirements are also organised into categories divided according to the differentiated aspects involved in designing any web application, such as:

Finally, each requirement has a priority level:

Project Consortium
  • Nextel
  • CBT
  • Universidad de Deusto
  • Asociación Innovalia
  • SQS


COMET is an international project aimed at created technology that supports messaging services that are easy to use and activate and which allows the end user to browse and manage its services from anywhere, at any time, irrespectively of the technology and device used.In order to achieve this ambitious goal, the potential of the convergent messaging infrastructures will be explored. SQS is involved in the COMET project as a Testing expert and provides its experience and its testing team to validate the results.

What is new in COMET
Why COMET is needed
COMET objectives
Project challenges
SQS objectives
Project Consortium
  • LogicaCMG / Netherlands
  • LogicaCMG / Czech Republic
  • HP / France
  • Coilbria / Norway
  • University of Eindhoven / Netherlands
  • Movial / Finland
  • SQS / Spain


The Twins project addresses co-design problems of product development consisting of integrated hard- and software development. Challenging topics in this development mode that need special attention include:

Project Consortium
  • Cetic
  • Intesi group (Intesi)
  • Rhea System S.A. (Rhea)
  • Barco Avionics & Command and Control
  • Nokia
  • Metso
  • VTT Electronics (VTT)
  • CEA List (CEA List)
  • Europe Technologies
  • Schneider Electric (Schneider)
  • Siemens VDO
  • Germany
  • Audi / Audi Electronics Venture GmbH (Audi AEV)
  • Fraunhofer-IIS/EAS (FhG-ISS)
  • pure-systems GmbH (pure-systems)
  • Netherlands
  • LaQuSo – Laboratory for Quality Software (LaQuSo)
  • LogicaCMG
  • Océ Technologies (Océ)
  • NBG Industrial Automation (NBG)
  • Spain
  • CBT
  • Innovalia Association
  • Software Quality Systems (SQS)
  • ZIV P+C



D-MINT aims at the development, enhancement, and practical deployment of high performance testing methods and tools for software-intensive systems based on leading edge model driven technologies. D-MINT will provide partners and European Industry with leading edge technology for the production of high quality software at reduced expenditures of time and money.
SQS offers experienced assessment in software quality assurance services and solutions, and system verification and validation, evident through their participation and interest in the creation of solutions in support of embedded software solutions.

Development and quality-assurance of software-intensive systems have become key factors of successful product engineering in many industrial sectors. The introduction of new restrictive technical standards, e.g. IEC 61508, the increasing time-to-market pressure, and growing system complexities demand new powerful software quality assurance methods and tools. Successful system development relies on the use of product and process models for organizational purposes, requirements analysis, design and testing. The systematic application of software testing, i.e. execution of the software with sample inputs to reveal faults or to prove certain quality properties, on the basis of models significantly reduces overall expenses in quality assurance before and after product release.

Automation of software development and software testing on the basis of executable models is currently an encouraging industrial trend, which has a significant impact on processes, methods and tools for software engineering. In combination with code generation, early prototyping, or simulation these model based approaches offer a high degree of automation and therefore significantly reduce the probability of human errors during the complete software lifecycle. Nevertheless, the automation of model based testing demands changes in the requirements analysis, development and testing process, which to this day have neither been successfully applied nor completely understood. Even though advanced model-based testing technologies are available from research, few have been deployed in practice due to a significant lack of powerful commercial or open-source tools.

Project Consortium
  • Logica
  • Improve
  • LaQuSo
  • CWI
  • Alstom
  • Pro Rail
  • Movares
  • ETSI
  • Datapixel
  • Trimek
  • Ideko
  • Asociación Innovalia
  • Soraluce
  • SQS
  • Nokia
  • VTT
  • NetHawk
  • Conformiq
  • Daimler Chrysler
  • Piketec
  • ABB
  • Testing Technologies
  • Fraunhofer
  • Inspire
  • iXtronics
  • IESE


TEFIS supports Research Services on Future Internet offering a single point of access to different testing facilities and testing of software communities and business developers to test, experiment and collaboratively develop knowledge.
The project has developed an open platform for accessing heterogeneous infrastructures and complementary tests, addressing the entire life cycle development of innovative services with the proper tools and test methodology. Through TEFIS platform, users will have support throughout the life cycle of the tests by accessing different test tools covering most of the activities of the software development cycle, such as the creation of the software, the packaging, compliance testing, systems integration, large-scale deployment, and evaluation of services in terms of runtime. The platform provides services necessary to enable the management of the underlying infrastructure testing. In particular, is responsible for the generic resource management, access to resources planning, software implementation, adaptation and identification of resources that can be activated and measurement services for a variety of test infrastructure.

Project Consortium
  • THALES Services SAS - France
  • Engineering Ingegneria Informatica S.p.A - Italy
  • Institut National de Recherche en Informatique et Automatique - France
  • IT Innovation – United Kingdom
  • Fundação de Apoio à Universidade de São Paulo - Brazil
  • THALES Communications -  France
  • ActiveEon - France
  • Lulea University of Technology – Centre for Distance-spanning Technology - Sweden
  • Software Quality System S.A - Spain
  • Fraunhofer Institute FOKUS - Germany
  • Poznań Supercomputing and Networking Center – Poland
  • University of Geneva - Switzerland
  • Universitat Politecnica de Catalunya - Spain
  • Technische Universitaet Braunschweig – Germany
  • Institute of Communication and Computer systems - Greece
  • VELTI - Greece
  • Lumiplan- France
  • Megève Tourisme- France


TSI-100102-2013-64 project co-funded by the Ministry of Industry, Energy and Tourism within the Economy and Digital Society Strategic Action.

Logo Ministerio federo
Project Overview

The implementation of tools and systems for dimensional quality control in optical technology production lines has greatly increased the amount of data acquired by the companies. While all the information of the actual characteristics of the pieces is a benefit, this increase in data traffic is raising an important problem for the companies.

On one side, they are not being able to take full advantage of the information, often limited to the critical measures defined in the quality plans, because of time or resources constraints. On the other side, these big size files require a lot of storage capacity and technical resources, needing a special infrastructure to be managed.

UBIQUITOUS aims to solve this situation helping the companies to manage all their metrology information, centrally from a single platform. This platform will be cloud based and will comprise factories, production lines and scanning systems.

Project Objectives

The system was conceived as an online platform managed in the cloud. This platform aims to streamline the management of clouds of points generated of parts from the whole company. Thus accessing to all this information via the platform will be possible. It is planned to integrate the access to the platform with its uploading / downloading and parts managing functions from the metrology software in order to make it even more accessible.

Project Consortium
  • Trimek
  • SQS
  • CBT


TSI-020401-2012-10 project co-funded by the Ministry of Industry, Energy and Tourism within the National Plan for Scientific Research, Development and Technological Innovation.

Logo Ministerio
Project Overview

Project SEED4C (Secured Embedded Element and Data Privacy for Cloud) responds to the European strategy of promoting the development of cloud computing. There is a clear European interest in competing with American organizations, such as Google, Amazon, Facebook, or Yahoo in the cloud market and, along this line, there is a great opportunity in the security area within this environment. Companies worldwide are hesitant to leverage on this technology, without greater or better security guarantees. To overcome this problem area, the European strategy for the development of cloud computing -brought forth at the Davos Economic Forum- aimed at promoting efficient data protection without conflicting with the single European market. In response to the current European context, project SEED4C will contribute the foundations for the definition and deployment of secure platforms in the cloud. For this purpose, SEED4C’s Consortium comprises a total of 18 companies from four different countries, Finland, France, Korea and Spain, operating on a €10,000,000 budget.


The intent of the project is to change the concept of Security in the Cloud to Cloud Security where isolated security points are all interconnected; to achieve this, coordinated security points of enforcement are proposed under the concept of a Network of Secure Elements (NoSEs). NoSEs are made of secure elements (SE) attached to computers, users or network appliances provisioned with secret keys. They can establish security associations, communicate together to setup trusted networks and propagate security conditions centrally defined to a group of machines. The project’s main objective is to study the impact of NoSEs upon the different layers of the architecture, from hardware to service in order to define how the trust can be propagated from the lower layers to the upper ones.

Project Consortium


SERVERY's main objective is related to the creation of a Service Marketplace, i.e. the possibility for end user to access to a great deal of innovative services created by professionals or by the user‘s community. The idea is to take advantage of the Internet and the Telco environment, considering the different architectural approaches (the innovative one of the Web 2.0. and the reliable and standardized one of IMS). The marketplace infrastructure aims at bridging the Web-based and IMS network, in order to make available a totally new operating environment, based on the flexibility and friendliness of former and the reliability of the latter, specifically considering security, charging and identity management.

The objective is really ambitious: starting form the current technology, it is necessary to create new functional entities and to redefine the existing components, enhancing their capabilities and connecting them by a series of API-based interfaces.

The main concepts explored are: publication and discovery of services; services assembly and composition; innovative means to access the market place including a personalized service environment and a web multimedia subsystem bridging to IMS domain; other important aspects such as identity management, privacy and to a series of intelligent enablers that allow to personalize services.

The project takes also into account the overall management of the marketplace for the whole service life-cycle, from the service creation, to the OA&M (operation, administration, and maintenance). This is complemented by defining the business models that are really important considering the possibility to implement a model of fair revenue sharing among the stakeholders of the marketplace.

Project Consortium
  • Orangelabs, France Telecom (Coordinator)
  • Alcaltel Lucent Bell Labs France
  • Téléfonica
  • Nokia Siemens Networks
  • Turkcell
  • Nippon Telephone and Telegraph
  • Bull
  • Universita Politéchnica de Valencia (UPV)
  • ITS Institut Télécom Sud Paris
  • Mantica
  • SQS
  • CBT
  • Carsa
  • Innovalia


2014 © ECeMet (TSI-020603-2012-160) is co-funded by the Ministerio de Industria, Energía y Turismo, (Plan Competitividad I+D 2012)

Logo Ministerio

ECeMet aims to develop a new methodology enabling the evaluation and certification of the algorithms applied to extract and calculate geometries from dense pointclouds acquired during the dimensional Quality control in the manufacturing sector.

Main project objectives are:

Therefore, the certification of the algorithms used in the geometry extraction software will generate the following benefits in the manufacturing companies: savings in manufacturing processes, higher production rate and efficiency, better brand/company image due to fulfil quality requirements.

Project Consortium
  • SQS
  • CBT
  • Innovalia


La metrología virtual, generación de piezas virtuales mediante el escaneo de las piezas reales, está teniendo una fuerte implantación en los controles de calidad dimensional de las empresas de fabricación de componentes. Este tipo de sistemas, basados en fuentes de luz y sensores ópticos, ofrecen ventajas respecto a los sistemas tradicionales de control por contacto como aumento de la información capturada, rapidez y digitalización del procedimiento.

La cantidad de información generada también está sirviendo para mejorar y optimizar otros procesos de la producción como son el diseño inicial, la gestión de la producción o el control de gastos. Hasta ahora los sistemas ópticos utilizados están diseñados para entornos industriales, con unos requerimientos de tamaño, robustez y horas de trabajo muy exigentes.

Los buenos resultados obtenidos hasta la fecha en términos de rendimiento, información y fidelidad respecto a la pieza física original han impulsado a las empresas del consorcio: Datapixel, CBT, SQS y Unimetrik a la búsqueda de soluciones mucho más portátiles para su uso con smartphones por otros mercados de menos tradición tecnológica y el público general (joyería, escultura, biología, arquitectura, impresión 3D) de forma que no sea necesaria ninguna base tecnológica académica.

Las principales dificultades que se pueden encontrar para la aceptación son:

Scan2Go desarrollará un sistema captador de imágenes 3D para uso con smartphones. Este revolucionario sistema constará de una aplicación SW y un gadget HW con una fuente de luz láser para acoplar en el teléfono. El escaneado de los objetos/formas se hará gracias a los sensores ya presentes en los teléfonos que en combinación con dispositivo de triangulación láser generarán reproducciones 3D de alta calidad y fidelidad. Scan2Go es una solución que permite capturar imágenes 3D de forma sencilla, rápida y económica en cualquier lugar con la ayuda de un smartphone.

Este sistema será completamente diferente y mucho más sencillo que las tradicionales máquinas de medición por coordenadas. Su reducido tamaño hará posible su transporte en un bolsillo o pequeño estuche semejante a las actuales cámaras digitales, permitiendo un uso cómodo y diario. Utilizará como sensor fotosensible la propia cámara integrada. De esta forma se reducirá las transformaciones de sistemas de referencia, estando todos los cálculos relacionados con las medidas del acelerómetro interno. Además este sistema no necesita ningún tipo de programación o automatización, bastará con pasar el escáner sobre la superficie de la muestra que se quiera digitalizar. Todas estas funcionalidades están orientadas a facilitar el uso de Scan2Go, de forma que esta solución pueda ser utilizada un amplio abanico de usos y aplicaciones, algunos de ellos totalmente nuevos, tanto a usuarios profesionales como al gran público.

El usuario profesional podrá capturar y digitalizar la forma de un objeto (orgánico e inorgánico) en un formato editable para su posterior uso en sistemas de tratamiento de nubes de puntos. Entre otros, destaca la creación de ficheros 3D, archivos CAD, comparación de formas, dar color y texturas etc… Profesionales en el campo del diseño, prototipado, moda, biólogos etc… podrán dar un amplio uso a este sistema ya que mediante un sistema portátil y asequible podrán capturar formas 3D de objetos reales de interés para sus negocios, estudios o desarrollos.

En cuanto al gran público, los amantes a la fotografía o usuarios de redes sociales verán en este sistema un apasionante dispositivo con el que experimentar nuevas posibilidades que hasta la fecha no han estado accesibles fuera del entorno industrial. Por ejemplo, la digitalización de piezas permitirá la creación de modelos virtuales de objetos reales que podrán ser introducidos como modelo de entrada en las impresoras 3D, pudiendo fabricar réplicas de cualquier objeto de nuestro interés: componentes de coche o electrodomésticos, muñecos o figuras de colección, joyas, elementos decorativos,…Podrán ser utilizados como modelos para videojuegos, películas o realidad aumentada; los biólogos y arqueólogos dispondrán de una réplica en digital de estructuras óseas, antigüedades o esqueletos de animales. Se optimizarán los programas de diseño y modelado con la utilización de estructuras reales, en lugar de figuras perfectas geométricas. Además, como siempre ocurre con tecnologías nuevas, se abrirán nuevos campos y aplicaciones no previstos inicialmente.

De esta manera, la solución propuesta se plantea como combinación de varios elementos que han de funcionar en perfecta cooperación:

Estos dos elementos, combinados con las tecnologías propias del smartphone -el giroscopio, acelerómetro, sensor óptico (que se encuentra en la cámara)- forman este atractivo producto cuyo mercado de aplicación es muy amplio.

Proyecto TSI-100101-2013-86 cofinanciado por el Ministerio de Industria, Energía y Turismo, dentro del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008-2011

Consorcio del proyecto
  • SQS
  • CBT


Para el fomento de la Internet del Futuro y sus aplicaciones la Comunidad Europea ha llevado a cabo varias iniciativas, entre ellas destaca FIRE (Future Internet Research and Experimentatio). Este enfoque requiere la puesta a punto de las instalaciones experimentales a gran escala, más allá de las herramientas de testing. El objetivo de FIRE es contribuir a realizar las expectativas que se han puesto en la Internet del Futuro, proporcionando un entorno de desarrollo para investigar y validar experimentalmente las ideas innovadoras y revolucionarias. Esta iniciativa desde el 2010 se ha concretado en una serie de proyectos orientados a recolectar, conectar y hacer disponibles testbeds procedentes de varias entidades. SQS, líder del proyecto APEX ha participado en TEFIS, uno de los proyectos lanzado bajo el paragua de la iniciativa FIRE, donde ha contribuido con parte de la infraestructura de su test lab. Como expertos en calidad de software SQS es consciente que las aplicaciones para la Internet del Futuro representan una imperdible oportunidad y un reto importante; debido a la complejidad de estas aplicaciones y a la alta calidad de los servicios que despliegan, las empresas desarrolladoras no pueden permitirse descuidar las actividades de validación. Sin embargo, difícilmente las empresas validadoras, como SQS, disponen de todas las herramientas necesarias para testear y validad todas las funcionalidades de estas aplicaciones.

Las infraestructuras de prueba desarrolladas en los proyectos FIRE, open source y de libre acceso, constituyen el punto de partida del proyecto APEX. Sin embargo, para que se puedan utilizar con éxito para el desarrollo de aplicaciones comerciales y servicios de alto valor añadido es necesario solucionar los puntos débiles de estas infraestructura:

Proyecto TSI-100102-2013-95 cofinanciado por el Ministerio de Industria, Energía y Turismo, dentro del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008-2011



The ITEA 2 CREATE project was a response to the increasingly dynamic nature of production systems and the need for more precise and knowledge-based manufacturing so that costs, time, errors and reprogramming efforts could be reduced and the integration of innovative technologies with legacy components facilitated. CREATE defined a novel architecture for industrial automation systems, implemented it in demonstrators and showed the benefits of its application in three use cases in the industrial automation domain.

Avanza Competitividad I+D+i: TSI-020400-2011-47

Logo Ministerio

Este proyecto, TSI-020400-2011-47, ha sido cofinanciado por el Ministerio de Industria, Energía y Turismo, dentro del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008-2011


ITEA 2: 10020

Logo Ministerio
Consorcio del proyecto
  • Datapixel (Coordinador)
  • CBT
  • Innovalia
  • SQS
  • EPC
  • Staubli


Proyecto TSI-100102-2014-89-04 cofinanciado por el Ministerio de Industria, Energía y Turismo, dentro del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica.

Logo Ministerio

ITEA 2: 13017

Logo Ministerio

El objetivo del proyecto AMALTEA4public es desarrollar un software de ingeniería para sistemas integrados, que son los sistemas predominantes en el sector automovilístico, aunque también tiene aplicaciones en otros sectores. La meta principal de AMALTHEA4public es integrar los resultados de diversos proyectos financiados con fondos públicos en nuevos desarrollos, utilizando los resultados de AMALTHEA para fomentar la transferencia a la aplicación y crear una comunidad en torno a la plataforma de herramientas combinadas y continuas. La intención es posicionar este marco de herramientas de código abierto como un estándar de-facto para el futuro diseño de un software de ingeniería que fluya dentro del sector de la automoción y de otros sectores donde también se utilicen sistemas integrados. Los resultados de AMALTHEA están basados en Eclipse, una infraestructura de herramientas de código abierto con un conjunto básico de herramientas incluidas. AMALTHEA4public quiere ir más lejos que Eclipse añadiendo, por ejemplo, puntos de venta exclusivos (unique selling points (USPs)), mostrando casos de éxito e integrando los resultados de investigaciones recientes en la vida real. El proyecto tiene la intención de añadir nuevas características. Por ejemplo: (i) pruebas de verificación y validación, (ii) seguridad, (iii) ingeniería de sistemas, (iv) ingeniería de línea de productos, y (v) el apoyo a núcleos. También abordará dominios adicionales como las TIC y la automatización.


La innovación de AMALTHEA4public se basa en el desarrollo y la difusión de una cadena de herramientas de código abierto, y estas son algunas de sus características más destacadas:

Área: Software Engineering

Fecha Comienzo / Fin: 2014 / 2017

Consorcio del proyecto
  • AVL Turkey
  • BHTC
  • CBT
  • Carsa
  • Dortmund University of Applied Sciences and Arts
  • Eclipse Foundation Europe Gmbh
  • Engine Power Components G.E., S.L.
  • Fraunhofer
  • Hexagon Studio
  • Innovalia
  • Institut for Automation und Kommunication (IFAK)
  • Itemis
  • Regensburg University of Applied Science
  • Robert Bosch GmbH
  • Software Quality Systems S.A.
  • TWT GmbH Science & Innovation
  • Timing Architects
  • University of Gothenburg
  • University of Paderborn
  • rt-labs AB


Start date: 2015 / End date: 2018

ODSI provides new security models with the properties and benefits of both hardware and software approaches. These models deliver only certified and proved minimal properties for isolation, with the goal of being used in mass production in all domains that require strong context isolation as M2M, IoT and network infrastructure sharing.

Project objectives and main impact
Embedded electronics demand produces more and more complex systems which favour the appearance of new security threats. In order to comply with different ecosystems, a generic framework that addresses end-to-end security properties and multiple level of security is built for guaranteeing a high level of trust. However, traditional methods for reaching this level of trust require high effort and time consuming engineering activities, in particular if the applications require certification. So, ODSI targets to build trusted proven systems within reduced time-to-market, flexibility to change or upgrade constraints without losing the constructed proofs. This concept will allow the manufacturers to decide on their own how to distribute security objectives between the hardware and software components of their platforms. The industry target is to deliver a common level of security, agnostic regarding the nature of the processor, with a minimal software interface (API), to implement their services in proven and isolated environments.

This project TSI-100200-2015-9 has been funded by the Spanish Ministry of Industry, Energy and Tourism, within the National Plan for Scientific Research, Development and Technological Innovation 2013-2016



Reliable Industrial Communication Over the Air.

ReICOvAir logo

Para situar a la industria en el contexto de fabricación y procesamiento avanzados (Industria 4.0), i.e. Industrial Internet of Things (Industrial IoT), es necesaria confianza y fiabilidad en las conexiones inalámbricas, con el fin de usar comunicación inalámbrica, en vez de las conexiones cableadas tradicionales, para controlar y monitorizar. Esto requiere probar la adecuación de un sistema de comunicación inalámbrico para una aplicación específica con un sistema de validación/calificación estandarizado.

El consorcio español se compone de empresas de IT y fabricación que trabajan de forma continua en entornos industriales IoT. En ReICOvAir, estos socios se centrarán en desarrollar pruebas de validación “end-to-end” en aplicaciones de la Industria 4.0 que usan Comunicaciones Inalámbricas Industriales.

Objetivo del proyecto

El desarrollo del proyecto ReICOvAir permitirá impulsar las tecnologías relacionadas con los sistemas de comunicación inalámbrica necesarios para una industria avanzada. Los frutos de este proyecto permitirán conseguir redes que funcionen de manera autónoma, actualmente necesarias para sistemas de fabricación avanzados y sistemas de procesado (Industria 4.0). Además, el hecho de permitir un desarrollo que aumente la fiabilidad de los sistemas de comunicación inalámbricos permitirá acceder al control de maquinaria o elementos a los que actualmente no se tiene acceso por estar en entornos aislados – donde las conexiones mediante cable no llegan – o elementos móviles que, hasta ahora, no se pueden controlar de manera remota de una manera fiable.

Logo Ministerio

Proyecto TSI-102000-2016-10 cofinanciado por el Ministerio de Industria, Energía y Turismo, dentro del plan nacional Acción Estratégica de Economía y Sociedad Digital.

Project Consortium
  • Fraunhofer Institute for Integrated Circuits IIS, Germany
  • CETECOM GmbH, Germany
  • Fraunhofer Heinrich Hertz Institute HHI, Germany
  • ifak e.V. Magdeburg, Germany
  • GHMT AG, Germany
  • Qosmotec, Germany
  • University of Oulu, Finland
  • Verkotan Oy, Finland
  • Sapotech Oy, Finland
  • Kaltio Technologies Oy, Finland
  • Software Quality Systems S.A., Spain
  • Trimek S.A., Spain
  • HOP Ubiquitous, S.L., Spain
  • Engine Power Components Group Europe, S.L., Spain


Wireless Autonomous, Reliable and Resilient Production Operation Architecture for Cognitive Manufacturing

Current practice is such that a production system is designed and optimized to execute the exact same process over and over again. The planning and control of production systems has become increasingly complex regarding flexibility and productivity, as well as the decreasing predictability of processes. The full potential of open CPS has yet to be fully realized in the context of cognitive autonomous production systems. SMEs face additional challenges to the implementation of “cloudified” automation processes. While the building blocks for digital automation are available, it is up to the SMEs to align, connect and integrate them together to meet the needs of their individual advanced manufacturing processes. Moreover, SMEs face difficulties to make decisions on strategic automation investments that will boost their business strategy. AUTOWARE objective is to build three distinct pillars to form a multi-sided ecosystem. (1) From the BeinCPPS, leverage a reference architecture (fully aligned with CRYSTAL and EMC2 CPS design practices and ARROWHEAD cloudification approach) across I4MS competence domains (cloud, CPPS, robotics), acting as a glue that will attract potential users and developers to a friendly ecosystem for business development, more efficient service development over harmonized architectures (smart machine, cloudified control, cognitive planning- app-ized operation). (2) To leverage a number of SME enablers; e.g. augmented virtuality, reliable wireless communications, CPPS trusted auto-configuration, smart data distribution and cognitive planning to ease cognitive autonomous systems. Finally, to leverage digital automation investments. AUTOWARE brings together the best of breed ARTEMISIA/ECSEL platforms, I4MS innovation, SAFIR business platforms and neutral experimental sites (robotics & process). AUTOWARE assets will be evaluated in two industrial pilots, PWR and SCM, and will offer well established industry and start-ups new business opportunities.

SQS is the coordinator of the project and responsible for the specification, design and development of the AUTOWARE validation and verification framework for the highly flexible cloudified robotic and automation services and TSN-OPC-UA next generation architectures and standards addressed by the project.